以文本方式查看主题

-  计算机科学论坛  (http://bbs.xml.org.cn/index.asp)
--  『 人工智能 :: 机器学习|数据挖掘|进化计算 』  (http://bbs.xml.org.cn/list.asp?boardid=62)
----  [推荐]数据挖掘十大经典算法  (http://bbs.xml.org.cn/dispbbs.asp?boardid=62&rootid=&id=49960)


--  作者:hellojzz
--  发布时间:7/15/2007 9:58:00 AM

--  [推荐]数据挖掘十大经典算法
这是候选的18个算法!

Classification
==============

#1. C4.5

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.


#2. CART

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

#3. K Nearest Neighbours (kNN)

Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.
DOI= http://dx.doi.org/10.1109/34.506411

#4. Naive Bayes

Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.


Statistical Learning
====================

#5. SVM

Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.

#6. EM

McLachlan, G. and Peel, D. (2000). Finite Mixture Models.
J. Wiley, New York.


Association Analysis
====================

#7. Apriori

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994.
http://citeseer.comp.nus.edu.sg/agrawal94fast.html

#8. FP-Tree

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372


Link Mining
===========

#9. PageRank

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117.
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X

#10. HITS

Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.


Clustering
==========

#11. K-Means

MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.

#12. BIRCH

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.
SIGMOD '96. ACM Press, New York, NY, 103-114.
DOI= http://doi.acm.org/10.1145/233269.233324


Bagging and Boosting
====================

#13. AdaBoost

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
DOI= http://dx.doi.org/10.1006/jcss.1997.1504


Sequential Patterns
===================

#14. GSP

Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.

#15. PrefixSpan

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.


Integrated Mining
=================

#16. CBA

Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86.
http://citeseer.comp.nus.edu.sg/liu98integrating.html
  

Rough Sets
==========

#17. Finding reduct

Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992


Graph Mining
============

#18. gSpan

Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.


--  作者:DMman
--  发布时间:7/15/2007 4:37:00 PM

--  
不错的总结
--  作者:jessie77
--  发布时间:9/6/2007 11:57:00 AM

--  
谢谢楼主
能详细的介绍一下吗
--  作者:第二天
--  发布时间:11/10/2007 9:37:00 PM

--  
好贴!谢谢分享
--  作者:mining
--  发布时间:11/11/2007 7:59:00 PM

--  
搞粗糙集的人汗颜!
研究这个东西的人那么多,大家都觉得这个理论性强,可是这些年粗糙集几乎没有开发出太成功的算法,最后的十大算法里find reduct算法也被淘汰了。

这个是TKDE的主编组织很多人投票搞出来的一个统计结果,应该具有很高的可信度,基本反映了国际上对目前算法的看法。


--  作者:第二天
--  发布时间:11/11/2007 8:03:00 PM

--  
好贴!谢谢楼主!
楼主真的好厉害!看了你的主页,牛!
--  作者:月亮忘记了
--  发布时间:3/20/2008 12:46:00 PM

--  
谢谢楼主
--  作者:周驰
--  发布时间:4/8/2008 10:04:00 PM

--  
都是很经典的算法啊。。。
--  作者:ylzhu
--  发布时间:12/26/2010 9:48:00 AM

--  
谢谢啊!!很有用!!
--  作者:w3china_wahaha
--  发布时间:10/9/2011 4:56:00 PM

--  
总结得很好,可以好好研究下。
W 3 C h i n a ( since 2003 ) 旗 下 站 点
苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
93.750ms